Вот из книги литейной.
Для изготовления разовых литейных форм используют легко формуемый материал, без особого труда разрушаемый при извлечении готовой отливки, но достаточно прочный, чтобы противостоять силам, возникающим при заполнении полости формы расплавленным металлом. В практике применяют смеси песков, глины и воды; они удовлетворяют приведенным выше требованиям, дешевы и доступны. Приготовляют формовочные смеси, перемешивая песок с определенным количеством глины и воды. Глина служит связующим. Определенному количеству глины соответствует определенное количество влаги. Кроме глины, используют и другие связующие материалы.
Прочность смесей из песка, глины и воды в сыром состоянии объясняется способностью глинистых мелкодисперсных частиц при перемешивании с водой образовывать растворы, похожие на коллоидные, в которых действуют электростатические силы (рис. 48). Кроме этих сил, действуют силы поверхностного натяжения воды, сближающие частицы, а также силы межчастичного фрикционного сцепления песчинок при уплотнении формовочной смеси.
Для изготовления смесей применяют различные формовочные пески (природные смеси). По ГОСТ 2138—74 они разделяются на классы по химическому составу (в зависимости от примеси глины), группы и категории по зерновому составу (размеру песчинок). В табл. 7 приведены основные характеристики песков и глин, которые используют в цехах цветного литья.
Глины состоят из тонкодисперсных частиц алюмосиликатов: каолинита Al2O3*2SiО2*2Н2О, монтмориллонита Al2O3*4SiО2*H2O+nН2O (или бентонита). Различают глины (ГОСТ 3226—65) по их связующей способности (три сорта и класса) в сыром и высушенном состоянии. Прочносвязующие глины обеспечивают сырую прочность стандартных образцов (90 % песка, 10 % глины, 2,5—3,5 % влаги, сверх 100 %), равную 0,1 МПа и более при сжатии, а малосвязующие 0,05—0,08 МПа. В высушенном состоянии прочность соответственно равна ≥0,55 МПа и ≤0,35 МПа. Кроме того, различают три группы глин T1, T2, T3 — по термохимической устойчивости в зависимости от содержания легкоплавких примесей (Fe2O3, Na2O, CaO, сульфиды и др.).
Формовочные и стержневые материалы и смеси
Кроме песков на основе SiO2, для изготовления форм, обладающих повышенной способностью к поглощению тепла и ускоряющих затвердевание металла в них, применяют смеси, содержащие магнезит, циркон. На практике в формовочные смеси вводят также специальные добавки для предотвращения пригара их к металлу, повышения газопроницаемости, податливости и облегчения выбивки. К ним относятся угольная пыль, маршаллит (тонкоразмолотый кварц), мазут, органические добавки (опилки, мука и др.), спецприсадки (сера, борная кислота, фторборкислый алюминий, сода и др.).
Из формовочных материалов готовят рабочие смеси, непосредственно используемые для изготовления форм и стержней.
В литейных цехах применяют смеси, состав которых зависит от сплава, из которого будет отлита деталь; от массы отливки (мелкие, средние и крупные); от способа использования форм (заливка в сырье или сухие формы, т. е. предварительно высушенные); от характера использования (единые, облицовочные, наполнительные смеси), от вида исходных материалов (естественные или синтетические смеси). Естественные смеси готовят из песков, к которым глина примешана в природном состоянии, а в синтетические смеси глину вводят в виде самостоятельной добавки. Преимущество синтетических смесей состоит в том, что они имеют хорошие свойства при минимальном содержании глины и влаги.
Чтобы получить качественные отливки, необходимо использовать формовочные смеси с определенным комплексом свойств: прочность и пластичность, газопроницаемость, огнеупорность, теплофизические свойства.
У обычных формовочных смесей сырая прочность на сжатие составляет 0,01—0,1 МПа, сухая (на разрыв) 0,2—2 МПа. Вместе с тем смеси не должны быть очень прочными, так как для получения точного, четкого отпечатка формы они должны хорошо заполнять углубления на модели, т. е. быть текучими, пластичными. Хорошими считают смеси, которые при максимальной текучести (пластичности) обеспечивают высокую прочность. Прочность зависит от содержания глины — чем ее больше, тем смесь прочнее, но до определенного предела. Качественными считают смеси, которые имеют высокую прочность и пластичность при минимальном содержании глины и влаги.
При заливке формы металлом образуется большое количество пара и газов, которые должны легко удаляться через стенки формы, чтобы не попасть в затвердевающий металл. Поэтому необходимо, чтобы материал формы был газопроницаемым. Газопроницаемость зависит от размеров и формы зерен песка, количества глины и влаги, плотности набивки, толщины стенок формы и др. Чем крупнее песок, чем меньше глины и влаги, ниже плотность набивки и тоньше форма, тем газопроницаемость выше. Хорошие смеси должны иметь небольшую газотворность, т. е, при нагревании выделять малое количество газообразных продуктов, либо, в крайнем случае, выделять их после того, как на отливке образуется плотная корка металла.
Для цветного литья применяют различные типовые формовочные смеси из песков, глины и других добавок. По способу использования различают единые, облицовочные и наполнительные смеси. При машинной формовке чаще применяют единые смеси для изготовления всей формы. При изготовлении крупных форм поверхность модели облицовывают смесью, содержащей чистый песок и глину (чтобы огнеупорность поверхности формы, соприкасающейся с металлом, была выше), а остальную часть формы наполняют смесью, используя частично отработанную смесь. В результате форма получается более дешевой. Рабочие смеси состоят из 85—97 % оборотной смеси (т. е. бывшей в употреблении, но просеянной и очищенной) с добавкой 3—15 % свежих песков и глины.
Для смесей в производстве алюминиевых сплавов применяют пески П010, П0063, К016А, К010А (примерно 70—80 % полужирных песков и 20—30 % кварцевых). Смеси обладают сырой прочностью 0,04—0,07 МПа, влажностью 4,5—5,5 % и газопроницаемостью 40—60 см/мин. Примерно такой же состав и свойства у смесей для магниевого литья, но влажность их меньше (3,5—4,0 %); кроме того, к ним добавляют специальные присадки, предотвращающие или затрудняющие возгорание сплава в форме. Типичной при литье магниевых сплавов является присадка BM, которая представляет собой смесь мочевины, сернокислого алюминия, борной кислоты (при заливке металла в форму мочевина CO(NH2)2 разлагается с выделением аммиака NH3 и CO2); сернокислый алюминий Al2(SO4)3, способствующий образованию пленки MgSO4 на металле; борная кислота HBO3, переходящая при нагревании в борный ангидрит B2O3, который взаимодействует с магнием по реакции 3Mg+B2O3→3MgO+2В. Образующаяся на поверхности сплава пленка MgSO4 уплотняется бором, перешедшим в магний, и предотвращает дальнейшее его окисление.
Для медных сплавов типовая рабочая смесь состоит на 85—95 % из оборотной и на 5—15 % из свежей смеси (в виде смеси песков К01А, К025А и П01А или TOlA). Рабочая смесь содержит 4,5—5,5 % влаги, обладает сырой прочностью 0,03—0,05 МПа, газопроницаемостью 30—50 см/мин. Смеси, предназначенные для изготовления форм (обычно для получения крупных отливок), подлежащих сушке при 280—400 °C, содержат повышенное количество глины (6—10 %) и влаги (до 8 %). Для изготовления разовых форм применяют также смеси со связующим в виде жидкого стекла в количестве 5—8 % (по массе). Эти смеси быстро твердеют при кратковременном подогреве до 200—300 С или при продувке их углекислым газом, благодаря чему существенно сокращается время изготовления форм и повышается прочность
Жидкостекольные смеси применяют также для изготовления стержней. Стержни, которые при заливке окружены со всех сторон (кроме знаков) жидким металлом и испытывают давление при его усадке, делают из более прочных смесей, чем формы. Для повышения прочности стержней в сухом состоянии используют специальные крепители или связующие добавки, которые вводят в количестве 0,5—5 % (по массе). После заливки под воздействием высоких температур крепитель выгорает или разлагается, связь между песчинками теряется, стержень не оказывает сопротивления отливке в момент усадки при затвердевании и легко выбивается при очистке отливки. Глину также применяют в качестве связующей добавки в стержневые смеси, но при нагревании она спекается, стержень становится неподатливым и с трудом выбивается. Как правило, глину используют совместно с другими связующими для придания смесям хорошей сырой прочности, так как ряд органических крепителей, придавая стержню высокую прочность после сушки (сухая прочность), не обеспечивает одновременно нужную сырую прочность.